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Machine learning pipelines for protein functional family prediction are urgently needed especially now
that only 1% of raw protein sequences have been manually annotated. Although existing machine learn-
ing algorithms have achieved a decent performance in modeling and predicting the functional families of
protein sequences, they still have two drawbacks. First, biological dependencies among nucleotides are
not rich enough to describe motifs for these methods. Also, existing algorithms are not accurate enough
to predict the functional families of newly discovered proteins. To address the above limitations simul-
taneously, we propose a novel deep learning framework for predicting protein family, DeepPPF, which
employs the word2vec technique in capturing distributional dependencies among nucleotides and dis-
covers rich features from diverse motif lengths to characterize proteins. The novelty of the DeepPPF is
in utilizing distributional dependencies among nucleotides. Experimental results on G protein-coupled
receptor hierarchical datasets show the effectiveness of DeepPPF in achieving the state-of-the-art perfor-
mance in items of Mathew’s correlation coefficients (MCC) of 97.62%, 88.45% and, 83.09% for family, sub-
family and, sub-subfamily hierarchical levels, respectively. Also, DeepPPF outperformed existing methods
in terms of prediction accuracy and Mathew’s correlation coefficients on the cluster of orthologous
groups (COG) and phage of orthologous groups (POG) datasets. Furthermore, we analyzed the ability of
DeepPPF framework to discover rich motifs for functional classes with the least sets of protein sequences.
The experimental results show that rich motif discovery is key to improving the modeling performance of
protein families through deep learning techniques. Finally, we investigated the effect of transferring a
low-level functional domain level to a high-level functional domain and results show that the target
domain prediction can be improved with transfer learning. Therefore, our proposed deep learning frame-
work can be useful in characterizing protein functional families. The codes and datasets are available at
https://github.com/CSUBioGroup/DeepPPF.

� 2020 Published by Elsevier B.V.
1. Introduction

Annotation of proteins based on their family domain functions
plays an indispensable role in understanding the theory behind
the life cycle at the molecular level [1,2]. Applying a practical
and standard approach to figure out the biochemical family of
unknown proteins, is one of the primary goals in protein function
prediction. Previous studies [3] have shown that computational
function annotation methods are much less expensive and less
time-consuming to characterize the exponentially increasing
unknown protein sequences when compared with experimental
methods [4–6]. Despite previous studies have achieved a decent
performance, extracting useful sequence information for protein
function prediction remains a challenging task in protein bioinfor-
matics [7]. One challenge is identifying combinations of rich motifs
that must be present or absent in a sequence for classifiers to reli-
ably assign it to a functional family. Machine learning represents
an attractive domain to help fill this gap by detecting informative
patterns [8]. These informative patterns can not only help charac-
terize newly discovered protein sequences, but also identify hor-
mones in humans, bioactive ligands and, discovery and
development of therapeutic drugs [9,10]. In addition, using
machine learning to discover motifs [11,12] for evolutionary rela-
tionships has always been a challenging task [13], since it calls
for accurate biophysical models of protein sequences. For this
requirement, several computational pipelines for predicting evolu-
tional functions have been developed by researchers using protein
sequences as input. Such pipelines can broadly be classified into
alignment-based and alignment-free models.

Alignment-based protein family modeling methods compare
and generate alignment motifs from multiple sequences using a
position-specific scoring matrix (PSSM) [14,15]. A couple of such
modeling are based on ClustalW [16], MUSCLE [17], Omega [18],
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and PASTA [19] and HHblits [20]. Multiple sequence alignment
techniques are capable of providing valuable information on
sequence conservation but need to handle insertions and deletion
of amino acids [14]. Thus, protein family modeling from multiple
sequences requires sophisticated techniques [4]. A more accurate
alignment method that can handle these challenges is the profile
hidden Markov model (pHMM) [21,22]. Furthermore, multiple
sequence alignment is a global alignment algorithm. Thus, much
recombination of conserved regions by rearrangement, inversion,
transposition or translocation is nearly impossible without infor-
mation loss.

Alignment-free methods have been successful in protein family
modeling. In this type of modeling category, multiple sequences
are not aligned to generate a position weight matrix (PWM) [23].
Techniques belonging to this group include k-mer based logistic
regression [24] and protvec logistic regression (ProtVec LR) [25].
k-mer techniques are more accurate than existing alignment-free
methods, and can process an arbitrary number of domains and
can speed up protein sequence modeling. A critical limitation of
modeling with k-mers is losing the order of biological information
in protein sequences. Thus, k-mers are not successful enough to
model protein families. Actually, there is no optimal way to deter-
mine k when using k-mers, which can affect the sensitivity and
specificity of the modeling task.

Several studies have shown that motif-based function modeling
can extract useful information from conserved sub-regions or resi-
dues of a protein chain [1,26]. Wang et al showed that an auto-
mated motif-based protein function classifier could identify
combinations of motifs that must be present or absent in a
sequence to reliably assign it to a functional family [27]. Studies
in [28] and [29] showed that sequence-based techniques could
be effective in identifying proteins that incorporate transmem-
brane proteins. In recent years, deep learning methods have
achieved state-of-the-art performance in language and biological
modeling [12,30–32]. The study in [30] used a trigram-based glo-
bal vector (GloVe) embeddings with several neural network archi-
tectures to model and predict protein functional family. Although
gated recurrent units (GRU) outperformed long short-term mem-
ory (LSTM), bidirectional LSTM (biLSTM), and convolutional neural
network (CNN) with a fixed filter size, much better results could be
achieved with CNN by utilizing convolutional units with the vari-
able size to extract rich motifs. DeepFam [4] was the first attempt
to apply an alignment-free deep CNN to the motif-discovery task,
by which protein functional family is well characterized. Although
DeepFam achieved decent performance in terms of accuracy, the
deep learning model accuracy, sensitivity and specificity [33], need
to be further improved by utilizing more biological information.

Because of the limitations of existing pipelines, there is a need
for a new pipeline for characterizing functional families of protein
sequences. This study leverages on the recent success of
alignment-free deep learning modeling to develop a novel pipeline,
DeepPPF, for modeling and predicting protein families. Our pipe-
line utilizes word2vec embedding features as inputs to a multi-
scale convolutional neural network. The novelty of this work is
the use of dense distributional motifs to capture the correlations
between nucleotides of protein sequences for protein family pre-
diction. Previous studies on alignment-free protein family predic-
tions have utilized one-hot encoding to represent each
nucleotide of a protein. However, one-hot encoding is sparse and
cannot capture the relationship between these nucleotides. There-
fore, we propose distributional encoding to characterize the rela-
tionship between nucleotides of a protein. This distributional
representation is the co-occurrence relationships between individ-
ual nucleotides instead of that between blocks of nucleotides; as in
the case of k-mer representations. For instance, if the one-letter
code for alanine, a nucleotide among the standard 20 IUPAC amino
20
acids, is ‘A’, then its distributional relationship, obtained using
word2vec, is a vector of continuous distribution (. . .0.003, 0.345,
0.053. . .), instead of the one-hot vector (0, 0, 0, 1, 0. . .0); where a
single entry is 1 and others are zeroes. Therefore, DeepPPF calcu-
lates the dense distribution of proteins using word2vec and feeds
these distributions into a stacked convolutional layer, 1-max pool-
ing, addition and, concatenation layers to extract rich conserved
regions. Subsequently, hidden units are utilized to detect longer
conserved regions. Then, a fully connected neural network is uti-
lized to extract high-order features and generate feature vectors
as output. Finally, a softmax function is utilized to infer family
probabilities. The computational experiments demonstrate that
our proposed deep learning framework improves the performance
of function prediction over other methods, and performs particu-
larly well in predicting functional families of protein sequences.
Furthermore, we investigate the ability of DeepPPF framework to
discover rich motifs for functional classes with the least sets of pro-
tein sequences. The findings indicate that rich motif discovery is
key to improve the performance of protein family modeling via
deep learning. Finally, to explore the best network architecture
for hierarchical level modeling and prediction, we transfer the
knowledge learned from the lowest hierarchical functional level
domain to two target functional levels. Our findings indicate that
the transfer learning approach can be used to improve the perfor-
mance of higher levels.

The developed deep learning framework has several advan-
tages. First, dense vectors are generated directly from raw
sequences without requiring multiple sequence alignment. Second,
using three different convolutional kernels and merge operations
to combine nearby short captured conserved regions, the problem
of determining the optimal length of convolutional units for rich
motifs can be overlooked. In addition, knowledge learned from
our deep learning model can be transferred to target hierarchical
level domains. Finally, our framework can automatically extract
rich motifs and make prediction simultaneously on particularly
challenging low similarity proteins.
2. Materials and methods

In order to improve the accuracy and performance of protein
family prediction, an alignment-free deep learning framework is
proposed. To validate the performance of the deep learning frame-
work, we selected the G-protein coupled receptor (GPCR) hierar-
chical level dataset, cluster of orthologous groups (COG) database
[4], and phages of orthologous groups (POG).
2.1. G-protein coupled receptor superfamily

GPCR [28], a well-studied protein superfamily consisting of
diverse proteins with seven highly conserved transmembrane seg-
ments, was used as the benchmark dataset. This dataset contains
divergent proteins that are hierarchically annotated. For our exper-
iment GDS, one of the largest GPCR datasets is utilized. The hierar-
chical evolutional levels of the GDS dataset include 5 families, 40
subfamilies and, 108 sub-sub families associated with 8354
unidentical protein sequences. The authors of [4] utilized 8222
protein sequences belonging to 5 families, 38 subfamilies and 86
sub-subfamilies. These protein sequences were downloaded at
http://epigenomics.snu.ac.kr/DeepFam/data.zip.

Using the GPCR dataset for functional family modeling and pre-
diction has several difficulties. First, the distribution of functional
families is highly biased. Fig. 1 shows the top 50 sub-subfamily’s
distribution of the GPCR protein sequences with the highest
frequencies.

http://epigenomics.snu.ac.kr/DeepFam/data.zip


Table 2
Frequencies of appearances for the five GPCR families.

Functional name Frequency rank Ratio of proteins with function

Class A 1 0.6568
Class C 2 0.2642
Class B 3 0.0752
Class E 4 0.0022
Class D 5 0.0016

Table 3
Frequencies of appearances for five selected GPCR subfamilies.

Functional name Frequency rank Ratio of proteins with function

Peptide 1 0.3180
CalcSense 4 0.0715
GlutaMeta 8 0.0216
GABA 16 0.0105
cAMP 32 0.0022

Fig. 2. Distribution of top 50 families with the highest frequencies in COG dataset.

Fig. 1. Distribution of top 50 Sub-subfamilies with the highest frequencies in GPCR
dataset.
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As seen in Fig. 1, 11 sub-subfamilies with the highest frequen-
cies make up about 50.19% of the entire samples. The bias of the
distribution can be understood more qualitatively from Table 1,
in which five GPCR sub-subfamilies, ranked as the first, 10th,
20th, 40th and 80th, in terms of frequency, are presented.

The most frequent functional sub-subfamily (Taste) appears in
11.6% of the GPCR dataset, while the 80th frequent functional
sub-subfamily (Gastric) appears in 0.16% of the GPCR dataset. This
noticeable bias in the distribution usually leads to poor classifica-
tion performance. Similar bias can be noticed in the family and
sub-family hierarchical functional levels, as presented in Table 2
and Table 3, respectively.

Second, there is a large variation in the number of amino acids
in each sequence. For instance, a protein sequence may have 400
amino acids, while another may have 900 amino acids. Further-
more, 284 protein sequences have above 1000 amino acids in each.
This can lead to a huge computational cost if such proteins are
included in a training set.

To overcome the difficulties arising from the characteristics of
the GPCR dataset, we filtered 284 sequences with the length longer
than 1000 amino acids or ambiguous amino acid codes (B, O, J, U, X,
and Z). This resulted in a total of 7938 protein sequences. Then, we
employ a deep learning algorithm to improve the performance of
GPCR functional prediction. For each hierarchical class, 10-fold
cross-validation was used to evaluate the modeling method [34].
Furthermore, the long sequences excluded during training were
used for testing.
2.2. Cluster of orthologous groups

COG [35], another well-studied protein family database consist-
ing of diverse proteins of microbial genomes, was used as another
benchmark dataset. This dataset has been accessible to the public
since 1997 and the most recent update was published in 2014
[4]. Each protein family contains a varying number of sequences
(ranging from 1 to 10,632) and sequence lengths (ranging from
21 to 29,202). The authors of [4], in one of their experiments, uti-
lized 1,129,428 protein sequences belonging to 1074 families. In
this dataset, the smallest family is that with a threshold of 500 pro-
tein sequences. These protein sequences were downloaded at
http://epigenomics.snu.ac.kr/DeepFam/data.zip. Fig. 2 shows the
top 50 family’s distribution of the COG protein sequences with
Table 1
Frequencies of appearances for five selected GPCR sub-subfamilies.

Functional name Frequency rank Ratio of proteins with function

Taste 1 0.1160
Adrenoreceptor 10 0.0212
Latrophilin 20 0.0135
Calcitonin 40 0.0067
Gastric 80 0.0016

21
the highest frequencies. As seen in Fig. 2, 10 families with the high-
est frequencies make up about 35.6% of the entire samples. There-
fore, the COG dataset is also a bias distribution.

2.3. Phages of orthologous groups

POG database is a collection of conserved orthologs of phage
genomes [36]. This dataset has been accessible to the public since
2011 and the most recent update was published in 2013. For this
work, POG-07 with 13,086 sequences belonging to 1689 families
was utilized. These protein sequences were downloaded at ftp://f
tp.ncbi.nlm.nih.gov/pub/kristensen/annotatedPOGs-07/. First, we
filtered out sequences of length shorter than 50 and those of length
longer than 1000. This resulted in a dataset of 12,677 protein
sequences belonging to 1,635 families. Subsequently, we filtered
out families with less than 4 protein sequences. This resulted in
a POG dataset of 11,411 proteins with 1,201 families. Fig. 3 shows
the top 50 family’s distribution of the COG protein sequences with
the highest frequencies. As seen in Fig. 3, 10 families with the
Fig. 3. Distribution of top 50 families with the highest frequencies in POG dataset.

http://epigenomics.snu.ac.kr/DeepFam/data.zip
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highest frequencies make up about 37.7% of the entire samples.
Similarly, the POG dataset is a bias distribution.

3. Methods

In this section, we first introduce an overview of our proposed
deep learning architectural framework. Also, the model implemen-
tation, baseline model, and evaluation metrics are discussed in Sec-
tions 3.2, 3.3 and 3.4, respectively.

3.1. Overview of our proposed deep learning framework

This work proposed DeepPPF, an alignment-free protein family
prediction pipeline, that takes raw protein sequences as input, gen-
erates dense embedding features, and infer the functional family of
proteins as output. First, the framework calculates dense distribu-
tional motifs from a center amino acid model trained with the
word2vec technique. Each center word is an IUPAC amino acid
code notation [4]. Thus, the word2vec encoding vector is a 21-D
vector. Second, the existence scores of rich conserved regions are
calculated with three different convolutional filters, 1-max pool-
ing, addition, and concatenation layers. Next, hidden units are uti-
lized to detect longer conserved regions that are activated
frequently for proteins of the same family. Then, to extract high-
order features from the existence of conserved regions and gener-
ate feature vectors as output, a fully connected neural network is
utilized. Finally, in order to infer the probabilities of being a mem-
ber of each family from the feature vector, a softmax layer is
adopted. The end-to-end framework for our model is shown in
Fig. 4.

3.1.1. Sequence encoding
The work of [37] showed that deep learning based on the repre-

sentation of pretrained distributed embedding like word2vec could
achieve remarkable performance. The word2vec technique [38–40]
can capture informative semantic features through unsupervised
learning [41]. Moreover, this embedding has been utilized a lot
in natural language processing [42] and RBP binding site prediction
[37]. In this study, word2vec embedding technique is used to map
each amino acid to a dense embedding vector of 21 dimensions in a
Fig. 4. An overview of DeepPPF framework. It is a multi-scale convolutional neural netwo
21-D vector. The 21-D vector is fed into three 1-D convolutional layers with 3 kernel scal
conserved regions. Then, conserved region scores are combined and fed to a fully-con
softmax layer is used to infer the probabilities of each functional family.
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vocabulary. Using this vocabulary, we encode each sequence as a
vector of 1000 indices. If the length of a sequence is less than
1000, the vector is padded with zeroes at the end [27]. Also, a pro-
tein is ignored if the length of a sequence is more than 1000. There-
fore, a protein sequence of the length of 1000 is represented as a
1000 � 21 matrix. One-hot encoding is utilized to encode the true
label, Yt , which is defined as:

Yt ¼ 1; if y ¼ ith in labelset

0; otherwise

(
ð1Þ

Here, i 2 1; � � � ; Lf g and t 2 1; � � � ;Nlabelf g.

3.1.2. Mult-scale CNN
Convolutional Neural Networks (CNNs) apply convolution fil-

ters over inputs to learn multiple local features and provide insight
into conserved regions of data. In our work, 1D multi-scale convo-
lution is applied over the encoded protein sequence. If k is the
number of convolution filters, and W is a filter kernel with the
dimension of mk � 1, then the mechanism of a multiscale convolu-
tion can be represented a follow [4].

hk;i ¼ r bk þ
Xmk

l¼1

Xiþl�1 �Wk;l

 !
ð2Þ

In this work, we apply filters with 3 different sizes k ¼ 3ð Þ; to
extract different high-level features [41], from the input sequence
matrix. The activation functionr; is ReLU which is defined as
follows.

r xð Þ ¼ max 0; xð Þ ð3Þ
To focus on the existence of locally conserved regions, 1-max

pooling [4,14,43] is utilized to select the highest activated value
among the l�mk þ 1 neurons; as follows.

hmax
k ¼ max

1�i�l�m
hk;i
� � ð4Þ

With the extracted multi-scale features, we add them into a
vector as a local context feature. In order to build a much rich local
context feature, the output of the added high-level features is con-
catenated into a fixed-size vector made up of the richest motif
rk whose input are protein sequences. The word2vec technique is utilized to obtain a
es, three 1-max pooling layers and, 2 merge layers to calculate the scores of existing
nected neural network, with 2000 hidden units to detect complex sites. Finally, a
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from the 3 scales. Dropout [34,38,44–46], before and after concate-
nation is used to prevent overfitting and train robust features. To
combine features from sequences and extract high-order features,
a dense hidden layer is applied as follows.

Zl ¼ r B
0
l þ
XNflt

k¼1

hmax
k W

0
k;l

 !
ð5Þ

Batch normalization, after the dense hidden layer, is used to
control the distribution of the combined feature vectors. Finally,
the conditional probability distribution over each functional family
is calculated, using a softmax function, as follows.

Ot ¼ B
0 0
t þ

XNhdn

l¼1

Zl �W
0 0
l;t ð6Þ
byt ¼
eOtP
reOr

ð7Þ
3.2. Model implementation and optimization

In training DeepPPF, the multi-output categorical cross-entropy
loss function was minimized with Adam optimizer as the update
rule [47]. The training process was done through the stochastic
gradient descent over shuffled mini-batch. Xavier glorot uniform
[48] was utilized in initializing weights of our model. The model
was fit with 90% of the training set and the remaining 10% for val-
idation. The optimization terminates after 20 epochs [4]. To pre-
vent overfitting [49], dropout layers and l2/l1 regularization [50]
were used. Keras with Tensorflow [24] as backend was utilized
to implement our deep learning model. To accelerate the training
process, we used NVIDIA Ge Force RTX 2080 Ti. The training time
on the GPCR datasets was less than 10 min and the inference time
was less than 1 s. In our work, the hyperparameter setup is pre-
sented in Table 4.

These hyperparameters, except for filter sizes and dropout rate,
were set to same values utilized in the work of Seo et al. [4]. To set
3 different filter sizes, we found an appropriate filter size, in the
range of 8 to 32, for the convolutional layer by assuming a single
filter size was to be utilized. Findings showed that a filter size of
20 yielded the best performance in terms of prediction accuracy.
This was followed by a filter size of 19 and then 8. Filter sizes in
the range of 9 to 18 either yielded similar or poor prediction results
as compared with filter sizes of 8, 19 and 20. Therefore, the single
multi-scale convolutional neural network layer was designed by
setting these three filter sizes {8, 19, 20}, to capture useful local
distributional features. Then, we manually selected an appropriate
dropout, in the set {25%, 30%, 35%, 40%}, for our deep learning
framework using the training and validation data set of the GPCR
sub-subfamily. Findings showed that a dropout rate of 35% yielded
the best performance in terms of accuracy and Mathew’s correla-
tion coefficient. Therefore, the dropout was set to be 35% for our
model.
Table 4
Hyperparameter setup.

Hyperparameter Set Value

Filter size, mk {8, 19, 20}
Number of convolutional filters, Nflt {250, 250, 250}
Number of hidden units, Nhdn 2000
Coefficient of regularization, k 0.0005
Dropout rate In range {25% - 40%}
Learning rate 0.001
Batch size 100
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3.3. Baseline model for performance comparison

Seo et al. [4] demonstrated that DeepFam obtained a decent
performance for the functional family prediction. In their experi-
ment, the 2-D convolution of one-hot encoded input was carried
out with 8 different filter sizes; {8, 12, 16, 20, 24, 28, 32}. After
1-max pooling of the outputs of each filter, the resulting local fea-
ture scores were concatenated and fed to a fully connected hidden
layer. Finally, a softmax layer was utilized to calculate the proba-
bilities of a protein sequence belonging to each class. For an exten-
sive comparison of our model, we obtained the prediction results
of the top six models on GPCR proteins sequences dataset from
[4]. Also, the prediction results of DeepPPF on the COG and POG
datasets were obtained. Furthermore, we generated test sets from
validation sets such that they contain GPCR protein sequences
belonging to training classes with the least numbers of protein
sequences. These test sets were utilized to investigate the impact
of bias distributions on our model.

3.4. Assessment metrics

We evaluated DeepPPF with five metrics that are commonly
used in protein function prediction. These measures include pre-
diction accuracy Accð Þ, Mathew’s correlation coefficient MCCð Þ,
average precision AvgPrð Þ, average recall AvgRcð Þ, and average f1-
measure Avgf1ð Þ. The formulas for computing these metrics are
as follows.

Acc ¼ #TP þ#TN
#TP þ#FP þ#TN þ#FN

ð8Þ

MCC ¼ TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þp ð9Þ

pri ¼
#TP

#TP þ#FP
ð10Þ

rci ¼ #TP
#TP þ#FN

ð11Þ

AvgPr ¼ 1
n
�
Xn

i¼1
pri ð12Þ

AvgRc ¼ 1
n
�
Xn

i¼1
rci ð13Þ

Avgf 1 ¼ 2 � AvgPr � AvgRc
AvgPr þ AvgRcÞ

� �
ð14Þ

pri and rci are the precision and recall of a predicted family term
i, respectively. n is the number of family terms. #TP and #TN rep-
resent the number of the positive and negative terms of predicted
proteins which are classified correctly, respectively. #FP and #FN
represent the number of the positive and negative terms of pro-
teins which are misclassified, respectively.
4. Results

The performance of DeepPPF, in terms of prediction accuracy, is
compared with six existing methods in Section 4.1 on 10-fold
cross-validation using the GPCR dataset. In Sections 4.2 and 4.3,
we further compared the performance of DeepPFF on the COG
and POG dataset respectively. In Section 4.4, we investigate the
impact of bias distribution on DeepPPF. Finally, in Section 4.5, we
compare the performance of DeepPPF with transfer learning.



Fig. 5. Comparison of family prediction performance between DeepPPF and
DeepFam.
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4.1. Performance of DeepPPF model in 10-fold cross-validation

The performance of DeepPPF was first evaluated on the GPCR
dataset, with the 10-fold cross-validation, using a bottom-up
approach following up the hierarchy of GPCR labels [2]. Cross-
validation was employed to reduce the impact of data dependency
and to improve the reliability of results [51]. Six methods used for
comparison were trained with the same data used to train our
model. These six methods include DeepFam, profile Hidden Mar-
kov Model (pHMM), 3-mer based logistic regression model (3-
mer LR), Protvec logistic regression (Protvec LR), Selective top-
down model (Std) and Naïve Bayes model (NB). Our model
achieved the best accuracy in the family, subfamily, and sub-
subfamily predictions, respectively, as shown in Table 5.

From Table 5, we can see the overall accuracies of all the
machine learning models decreased as the hierarchical level
became deeper; from family to sub-subfamily. This is due to the
much-unbalanced classes at a deep level as compared to an imme-
diate level.

To show DeepPPF distinguishing capability in predicting func-
tional family over the state-of-the-art alignment-free deep learn-
ing method, our deep learning framework was further evaluated
with the baseline model, DeepFam, using MCC and bAcc as metrics.
The hyperparameter settings for DeepFam is similar to that in [4].
To capture more features, we increased the number of filters in the
DeepFam model to 250. Fig. 5 shows the plot for functional family
prediction. We can see that the performance of our model is better
over Acc, bAcc andMCC measures with the 10-fold cross-validation.
Similarly, Figs. 6 and 7 presents the results at the sub-family and
sub-subfamily hierarchical levels, respectively. However, it can
be seen that at the sub-family level, DeepFam is slightly higher
in bAcc measure.
DeepPPF DeepFam

Fig. 6. Comparison of sub-family prediction performance between DeepPPF and
DeepFam.
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4.2. Performance of DeepPPF model on COG dataset

Furthermore, we evaluated DeepPPF on the COG dataset using
3-fold cross-validation [2]. Then, results obtained were compared
with four existing methods. These four methods include DeepFam,
profile Hidden Markov Model (pHMM), 3-mer based logistic
regression model (3-mer LR), Protvec logistic regression. Our
model achieved lower accuracy, for the COG dataset than Deep-
Fam, as shown in Table 6.

However, our model slightly outperformed DeepFam, in terms
of bAcc and MCC measures as shown in Fig. 8.
80.00%

80.50%

81.00%

81.50%

82.00%

Acc bAcc MCC
DeepPPF DeepFam
4.3. Performance of DeepPPF model on POG dataset

To further evaluate the performance of DeepPPF, we utilized the
POG dataset for training and testing. We split the total samples in
such that 75% were training set and 25% for the testing set. Our
model achieved a slightly better predictive power in terms of
Table 5
Prediction accuracy (%) at each hierarchical level.

Method Family Sub-family Sub-subfamily

DeepPPF 98.89 90.31 84.38
DeepFam* 97.17 86.82 81.17
pHMM* 95.77 85.39 78.50
3-mer LR* 95.59 83.51 77.06
Protvec LR* 88.58 74.98 67.32
Std** 95.87 8.77 69.98
NB** 77.29 52.60 36.66

Note: Results marked with * are extended from [4]. Results marked ** are extended
from [28]. Bold indicates the best performance for each data set.

Fig. 7. Comparison of sub-subfamily prediction performance between DeepPPF and
DeepFam.
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Acc;AvgRc;Avgf1 and MCC, for the POG dataset than DeepFam, as
shown in Table 7.
4.4. Impact of bias distribution on our model

Furthermore, we investigated the impact of bias distribution in
modeling classes with few protein sequences. The experiment was
done as follows. We computed the frequency distribution of
classes at each hierarchical functional level. From the distributions,



Table 6
Prediction accuracy (%) on COG dataset.

Method Accuracy

DeepPPF 91.83
DeepFam* 95.40
pHMM* 91.75
3-mer LR* 85.59
Protvec LR* 47.34

Note: Results marked with * are exten-
ded from [4]. Bold indicates the best
performance for the data set.
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we inferred 25, 25 and 3 functional classes with the least frequen-
cies at the sub-subfamily, sub-family and family levels, respec-
tively. Then, we created test sets from the validation sets such
that they contain only protein sequences belonging to these
inferred classes. For instance, from Table 3, family’s ‘B’, ‘E’ and ‘D’
contains the least number of GPCR proteins in the training data
set. Therefore, only protein sequences belonging to these three
classes are extracted from the validation set to form the test set
for functional family prediction. Also, the ‘BrainSpec’ protein fam-
ily has the least number of sequences in the sub-subfamily training
set. Therefore, protein sequences in the validation set belonging to
‘BrainSpec’ family were among the sequences extracted to create
the sub-subfamily test set. Finally, these test sets were predicted
using our pretrained models and DeepFam models for each fold.
Finally, the contribution of our model in discovering rich motifs
for these proteins sequences is determined by comparing its
Acc;AvgPr;AvgRc;Avgf1 and MCC with those of the baseline
model. Tables 8–10 show the results of the contributions to family,
sub-family and, sub-subfamily predictions, respectively. Compar-
ing these metrics can determine the impact of bias on DeepPPF
using the baseline model as the reference.

Results in Table 8 indicated that our model has a better predic-
tive performance than DeepFam in all metrics. This signifies the
ability of our model to capture rich motifs for functional family
prediction. Thus, our model is more robust in handling bias distri-
bution. Similarly, with a slightly better performance indicated in
Table 9, our model can compete with DeepFam in capturing rich
motifs for sub-family predictions. Additionally, the proposed
model performed better than DeepFam in modeling sub-
subfamily functions of the GPCR dataset; as indicated in Table 10.
Fig. 8. DeepPPF vs. DeepFam o
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Therefore, the bias distribution of the GPCR dataset affected the
baseline model more than our model.
4.5. Comparing the performance of deep learning method with transfer
learning

Furthermore, we investigated the possibility of improving the
predictive performance of DeepPPF by transfer learning. As shown
in Fig. 9, the transfer learning framework consists of two steps.
Firstly, we trained our proposed deep learning framework for a
low hierarchical family level prediction (source domain task) using
the GPCR dataset. For this step, we selected one of the cross-
validation models utilized in Section 4.1. For instance, we selected
the seventh cross-validation model of the sub-subfamily classifica-
tion task and the fifth cross-validation model of the sub-family
classification task. The second step was to fix the shared network
parameters and then, fine-tune the hidden dense layer and retrain
the weights of the output layer for the upper family-level classifi-
cation using the GPCR dataset. The shared network layers include
multi-scale convolutional networks, addition layer and concate-
nate layer.

Two source domain models were utilized for transfer learning.
First, the selected sub-subfamily (source domain) model was uti-
lized to fix parameters for sub-family (target domain) and, family
(target domain) predictions. Also, the selected sub-family model
(source domain) was utilized to fix the parameters for family (tar-
get domain) prediction. Finally, our proposed deep learning frame-
work with and without transfer learning was evaluated, with the
10-fold cross-validation, by comparing their Acc;AvgPr;AvgRc;
Avgf1 and MCC. Fig. 10 shows the results of family prediction with
and without transfer learning.

It is obvious, from Fig. 10, that the prediction accuracy and
Mathew’s correlation coefficient obtained by transfer learning out-
performs our proposed model without transfer learning. Our
model, when the sub-subfamily model was the source domain
task, obtained the values of Acc;macroAvgPr;macroAvgRc;
macroAvgf1 and MCC, in percentages, being 99.35, 83.42, 81.07,
81.91 and 98.63, respectively. The corresponding values, in per-
centages, obtained when subfamily-based source model was trans-
ferred, are 99.37, 83.61, 83.07, 83.28, and 98.66, respectively. The
results above show that the subfamily model is more suitable than
sub-subfamily, as a source domain task, for the family target
domain. However, DeepPPF model without transfer learning, out-
performed the transfer learning models, in terms
n 3-fold cross-validation.



Table 7
Prediction results on POG dataset.

Method Acc AvgPr AvgRc Avgf1 MCC

DeepPPF 78.54 71.57 72.41 70.35 78.20
DeepFam 78.23 72.18 71.95 70.18 78.04

Note: Bold indicates the best performance.

Table 8
Impact of bias distribution on family modeling.

Method Acc AvgPr AvgRc Avgf1 MCC

DeepPPF 92.34 56.00 52.57 53.92 62.36
DeepFam 91.04 51.50 47.90 49.35 58.87

Note: Bold indicates the model with less impact from bias distribution.

Table 9
Impact of bias distribution on sub-family modeling.

Method Acc AvgPr AvgRc Avgf1 MCC

DeepPPF 83.64 80.20 74.75 76.40 83.29
DeepFam 79.23 80.12 74.78 76.41 78.97

Note: Bold indicates the model with less impact from bias distribution.

Table 10
Impact of bias distribution on sub-subfamily modeling.

Method Acc AvgPr AvgRc Avgf1 MCC

DeepPPF 83.53 76.72 73.09 74.24 83.55
DeepFam 80.83 73.46 69.30 70.59 80.83

Note: Bold indicates the model with less impact from bias distribution.

Fig. 9. DeepPPF framework with transfer learning.
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ofmacroAvgPr;macroAvgRc; andmacroAvgf1 (86.40, 86.19, and
86.06, respectively), the values obtained, in percentages, for Accand
MCC (98.89 and 97.62, respectively) are the least. Thus, transfer
learning can improve protein functional family prediction.

Similarly, Fig. 11 presents the comparison of our model, with
and without transfer learning, for protein sub-family prediction.
From Fig. 11, DeepPPF with transfer learning performs better than
26
DeepPPF without transfer learning in GPCR protein sub-family pre-
diction. Without transfer learning, Acc;macroAvgPr;macroAvgRc;
macroAvgf1 and MCC, in percentages, increased from 90.31,
84.72, 81.67, 81.90, and 88.45 to 91.21, 85.17, 84.15, 83.61, and
89.54, respectively. In summary, sub-subfamily (source) domain
task can improve the performances of DeepPPF model sub-family
(target domain) of GPCR proteins.
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Fig. 10. Performances of DeepPPF model with and without hierarchical transfer learning during family prediction.
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5. Conclusion

This work developed and tested DeepPPF, a new deep learning-
based alignment-free framework for functional family prediction
of proteins. Also, this work has shown the advantage of distribu-
tional representation of each nucleotide over one-hot encoding.
Results presented show that DeepPPF model, which utilizes distri-
butional representation, has a better predictive performance than
the state-of-the-art machine learning methods which utilize one-
hot encoding in capturing motifs. DeepPPF achieved the best pre-
dictive performance in terms of Mathew’s correlation coefficients
(97.62%, 88.45% and, 83.09%) and prediction accuracy (98.89%,
90.31%, 84.38%) on the GPCR family, sub-family and sub-
subfamily datasets, respectively. DeepPPF slightly outperformed
other existing methods, in terms of Mathew’s correlation coeffi-
cients (90.31), on the COG dataset. Also, DeepPPF performed better
than DeepFam, in terms of Mathew’s correlation coefficients
(78.20%) and prediction accuracy (78.54%), on the POG dataset.
The main contribution of our work is related to the use of distribu-
tional representation and deep learning techniques to effectively
capture rich motifs from protein sequences. This makes DeepPPF
have some desirable advantages. First, the experimental tests show
that our model is more accurate than existing machine learning
pipelines in modeling and predicting functional families of protein
sequences. Second, DeepPPF is another alignment-free technique
based on multi-scale CNN, which is scalable, in terms of the num-
ber of convolutional kernels, without sacrificing the modeling
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power. In addition, we showed that using distributional motifs as
inputs, our model can discover rich motifs for modeling functional
families with very few proteins. Since a huge number of protein
sequences generated can belong to highly unbalanced functional
families created from manually annotated sequences, a more accu-
rate model with high specificity and sensitivity is very important.
Thus, DeepPPF can be useful in this regard. Although some proteins
may belong to more than one functional family, the DeepPPF
model is limited to a multi-class protein functional family problem.
Therefore, DeepPPF can predict only a functional family for a pro-
tein. Informed by the performance of DeepPPF in predicting the
COG dataset, another limitation of DeepPPF is its decreasing pre-
dictive accuracy and precision when utilized to model datasets
with proteins of short sequence lengths. Also, DeepPPF is affected
by data imbalance. Few protein functional families have a lot of
protein sequences while many protein families have few numbers
of protein sequences. This can cause poor mining of protein family
features. Thus, resulting in misclassification of some proteins. Also,
the thresholds set for selecting protein sequence and functional
family is another limitation. Therefore, leading to information loss.

As part of future work, there is a need to further improve the
predictive power of our model by exploring additional sources of
sequence-derived information. For instance, quantitative biophys-
ical properties can be a potential inclusion. Also, there is a need to
further capture rich motifs for our model by increasing its com-
plexity without the explosion of its parameters. For example,
adopting max-pooling strategies and combining other competitive
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deep learning methods in natural language processing with our
model are options. Furthermore, due to recent successes of deep
transfer learning, there is a need for a comprehensive study of
transfer learning frameworks for protein family prediction. Finally,
there is a need to extend our work to a multi-label problem
because some proteins have multiple functions. DeepPPF can be
applied, in the field of neuroscience, to improve proteome charac-
terization and pattern recognition. Additionally, DeepPPF can be
applied practically in predicting GPCR’s families, thereby facilitat-
ing drug discovery.
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